Boltzmann H function and entropy in the plasma sheet
نویسندگان
چکیده
[1] Boltzmann’s H function was evaluated using 10 years of 1-min distribution functions. These results were used to study the long-term averaged spatial distributions of four entropy parameters. The average entropy density sa(x), where a = i for ions and a = e for electrons, increased when moving Earthward or toward the flanks. The magnitudes of these entropy changes were similar for ions and electrons. The entropy per unit flux tube Sf,a(x) decreased when moving Earthward or toward midnight. The spatial changes of sa(x) and of Sf,a(x) were attributed primarily to variations of the particle density na(x) and of the particle content of each unit flux tube Nf(x), respectively. A dimensionless parameter (S/Ncv)H,i that is proportional to the average entropy per ion increased when moving Earthward or toward midnight near the neutral sheet. The dimensionless parameter proportional to the entropy per ion that would exist in a plasma with the measured pressure and density but with a Maxwellian distribution function (S/Ncv)P,i was also calculated. Differences between (S/Ncv)P,i and (S/Ncv)H,i showed that the plasma was closer to equilibrium near the neutral sheet at x = 10 RE than at x = 28 RE. These gradients of the entropy per ion and of the deviations from equilibrium suggest that nonadiabatic processes and particle scattering are significant throughout the region studied.
منابع مشابه
Natural Convection and Entropy Generation in Γ-Shaped Enclosure Using Lattice Boltzmann Method
This work presents a numerical analysis of entropy generation in Γ-Shaped enclosure that was submitted to the natural convection process using a simple thermal lattice Boltzmann method (TLBM) with the Boussinesq approximation. A 2D thermal lattice Boltzmann method with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations are performed at a constant Prandtl number (Pr ...
متن کاملLattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection
The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...
متن کاملInfluence of inclined Lorentz forces on entropy generation analysis for viscoelastic fluid over a stretching sheet with nonlinear thermal radiation and heat source/sink
In the present study, an analytical investigation on the entropy generation examination for viscoelastic fluid flow involving inclined magnetic field and non-linear thermal radiation aspects with the heat source and sink over a stretching sheet has been done. The boundary layer governing partial differential equations were converted in terms of appropriate similarity transformations to non-line...
متن کاملEntropy generation in hydromagnetic and thermal boundary layer flow due to radial stretching sheet with Newtonian heating
The entropy generation during hydromagnetic boundary layer flow of a viscous incompressible electrically conducting fluid due to radial stretching sheet with Newtonian heating in the presence of a transverse magnetic field and the thermal radiation has been analyzed. The governing equations are then solved numerically by using the fourth order Runge-Kutta method with shooting technique. The eff...
متن کاملSome properties of the parametric relative operator entropy
The notion of entropy was introduced by Clausius in 1850, and some of the main steps towards the consolidation of the concept were taken by Boltzmann and Gibbs. Since then several extensions and reformulations have been developed in various disciplines with motivations and applications in different subjects, such as statistical mechanics, information theory, and dynamical systems. Fujii and Kam...
متن کامل